Third Semester B.E. Degree Examination, Aug./Sept.2020 Analog Electronic Circuits

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

a. Define DC and AC resistance of a diode. Determine V₀ for the circuit shown in Fig.Q.1(a). Assume diode is ideal. (07 Marks)

b. For the circuit shown in Fig.Q.1(b), obtain the output voltage $V_0(t)$ waveform and transfer characteristic plot for the input $V_i(t) = 30$ sinwt. Assume diodes are ideal. (08 Marks)

c. Explain the operation of a positive clamper.

(05 Marks)

2 a. For the Voltage-Divider bias configuration shown in Fig.Q.2(a). Determine I_B , I_C , V_{CE} , V_C , V_E and V_B . Assume $\beta = 80$ and $V_{BE} = 0.7V$. (07 Marks)

b. Design an Emitter stabilized network at $I_C = \frac{1}{2}I_{Csat}$ and $V_{CEQ} = \frac{1}{2}V_{CC}$. Use $V_{CC} = 20V$, $I_{Csat} = 10\text{mA}$, $\beta = 120$ and $R_C = 4R_E$. Assume $V_{BE} = 0.7V$ (07 Marks)

c. Derive the expressions for $S(I_{CO})$, $S(V_{BE})$ and $S(\beta)$ for the fixed bias BJT configuration.

(06 Marks)

- 3 a. Derive the expressions for Z_i , Z_o and A_v for the voltage divider bias BJT configuration using r_e equivalent model. (08 Marks)
 - b. Write the Hybrid equivalent model of common base configuration (for pnp transistor).

c. For the circuit shown in Fig.Q.3(c), determine r_e , Z_i , Z_o and A_v . Assume $\beta=110$ and $V_{BE}=0.7V_e$. (07 Marks)

- 4 a. Derive the expression for the miller input capacitance and output capacitance. (10 Marks)
 - b. Determine the lower cutoff frequency for the circuit shown in Fig.Q.4(b) using low frequency response analysis for the following parameters $C_S=10\mu F$, $C_E=20\mu F$, $C_C=1\mu F$, $R_S=1K\Omega$, $R_1=40K\Omega$, $R_2=10K\Omega$, $R_E=2K\Omega$, $R_C=4K\Omega$, $R_L=2.2K\Omega$, $\beta=100$, $r_0=\infty$ and $V_{CC}=20V$. (10 Marks)

PART - B

5 a. For the circuit shown in Fig.Q.5(a), calculate I_B , I_E , V_E , V_B , Z_i and Z_o . Assume $\beta_D = 8000$, $V_{BE} = 1.6V$, $r_i = 5K\Omega$, $V_{CC} = 18V$. (10 Marks)

- Fig.Q.5(a) impedance and output in
- b. Derive the expressions for the input impedance and output impedance of voltage-shunt feedback amplifier. (10 Marks)
- 6 a. For class B amplifier providing a 22V peak signal to a 8Ω load and a power supply of $V_{CC} = 25V$. Determine the input power, output power, circuit efficiency, maximum input power and maximum output power. (10 Marks)
 - b. Explain the working of series-fed class A amplifier and prove that the maximum efficiency is 25%. (10 Marks)
- 7 a. Write the circuit diagram of Wein Bridge Oscillator circuit and explain. Write the expression for frequency of oscillation. (10 Marks)
 - b. Explain BJT crystal controlled operating in parallel resonant mode. (05 Marks)
 - c. In a transistor Colpitts oscillator find the value of L for a frequency of 110kHz. Assume $C_1 = 2nF$ and $C_2 = 80nF$. (05 Marks)
- 8 a. Obtain the small signal model of a MOSFET. (10 Marks)
 - b. Obtain the expression for Z_i , Z_o and A_v of JFET fixed bias configuration. (10 Marks)

* * * * *